ค้นหา
  
Search Engine Optimization Services (SEO)

กราฟของฟังก์ชัน

กราฟของฟังก์ชัน f (อังกฤษ: graph of a function) ในทางคณิตศาสตร์ คือการรวบรวมคู่อันดับ (x, f(x)) ทั้งหมด ถ้าฟังก์ชันรับค่า x เป็นสเกลาร์ กราฟนี้จะเป็นกราฟสองมิติ และจะกลายเป็นเส้นโค้งสำหรับฟังก์ชันต่อเนื่อง ถ้าฟังก์ชันรับค่า x เป็นคู่อันดับของจำนวนจริง (x1, x2) กราฟนี้จะเป็นการรวบรวมสามสิ่งอันดับ (x1, x2, f(x1, x2)) ทั้งหมด หรือเป็นกราฟสามมิติ และจะกลายเป็นพื้นผิวสำหรับฟังก์ชันต่อเนื่อง

หากกล่าวอย่างไม่เป็นทางการ ถ้า x เป็นจำนวนจริง และ f เป็นฟังก์ชันค่าจริง กราฟ อาจหมายถึงตัวแทนเชิงภาพ (graphical representation) ของการรวบรวมเหล่านี้ในรูปแบบกราฟเส้น นั่นคือเส้นโค้งบนระนาบคาร์ทีเซียน และแกนคาร์ทีเซียนเป็นต้น การวาดกราฟบนระนาบคาร์ทีเซียนบางครั้งก็อาจเรียกว่า การร่างเส้นโค้ง (curve sketching) กราฟของฟังก์ชันจำนวนจริงอาจลงจุดได้โดยตรงบนตัวแทนเชิงภาพของฟังก์ชันนั้น สำหรับฟังก์ชันทั่วไป ตัวแทนเชิงภาพไม่จำเป็นว่าจะต้องสามารถหาได้ และนิยามของกราฟของฟังก์ชันก็เพียงพอต่อความต้องการในประโยคคณิตศาสตร์ต่าง ๆ แล้ว ตัวอย่างเช่น ทฤษฎีบทกราฟปิด (closed graph theorem) ในการวิเคราะห์เชิงฟังก์ชัน

มโนทัศน์ของกราฟของฟังก์ชันสามารถวางนัยทั่วไปเป็นกราฟของความสัมพันธ์ (graph of a relation) สังเกตว่าถึงแม้ฟังก์ชันหนึ่ง ๆ สามารถระบุได้ด้วยกราฟของมันเสมอ แต่ฟังก์ชันสองฟังก์ชันที่มีโคโดเมนต่างกันก็อาจมีกราฟเหมือนกันได้ ฟังก์ชันเหล่านั้นจึงไม่ใช่ฟังก์ชันเดียวกัน ยกตัวอย่าง ฟังก์ชันพหุนามกำลังสามในตัวอย่างเป็นฟังก์ชันทั่วถึง (surjection) ถ้าโคโดเมนเป็นจำนวนจริง แต่จะไม่ใช่ฟังก์ชันทั่วถึงถ้าโคโดเมนเป็นจำนวนเชิงซ้อน

การทดสอบว่ากราฟเส้นโค้งหนึ่ง ๆ เป็นฟังก์ชันของ x หรือไม่ ให้ใช้การทดสอบเส้นแนวยืน (vertical line test) ในทางกลับกัน การทดสอบว่ากราฟเส้นโค้งหนึ่ง ๆ เป็นฟังก์ชันของ y หรือไม่ ให้ใช้การทดสอบเส้นแนวนอน (horizonal line test) ถ้าฟังก์ชันนั้นมีฟังก์ชันผกผัน กราฟของฟังก์ชันผกผันจะหาได้จากเงาสะท้อนในกระจกของกราฟของฟังก์ชันเดิม โดยมีเส้นตรง y = x เป็นแกน

ในทางวิทยาศาสตร์ วิศวกรรมศาสตร์ เทคโนโลยี การเงิน และอื่น ๆ กราฟถูกใช้เป็นเครื่องมืออเนกประสงค์ กรณีง่ายสุดคือตัวแปรหนึ่ง ๆ จะถูกลงจุด (plot) เป็นฟังก์ชันของตัวแปรอื่น โดยใช้แกนที่ตัดกันเป็นมุมฉากตามปกติ

ในรากฐานของคณิตศาสตร์สมัยใหม่อันเป็นที่รู้จักกันว่าทฤษฎีเซต ฟังก์ชันและกราฟของฟังก์ชันโดยพื้นฐานถือว่าคือสิ่งเดียวกัน

บางครั้งการใส่เกรเดียนต์ของฟังก์ชันและเส้นโค้งระดับไว้บนกราฟก็อาจมีประโยชน์ เส้นโค้งระดับสามารถวาดบนกราฟพื้นผิวของฟังก์ชันหรือฉายลงบนระนาบข้างล่าง

(ขึ้นอยู่กับการคูณด้วยค่าคงตัว) สิ่งนี้สามารถพบได้โดยพิจารณากราฟว่าเป็นเซตระดับ (level set) ของฟังก์ชัน g(x,z)=f(x)?z{\displaystyle g(x,z)=f(x)-z} และการใช้ ?g{\displaystyle \nabla g} เป็นแนวฉากของเซตระดับ

กราฟของฟังก์ชันเป็นส่วนหนึ่งของผลคูณคาร์ทีเซียนของเซต ตัวอย่างเช่น ระนาบ xy เป็นผลคูณคาร์ทีเซียนระหว่างเส้นตรงสองเส้นคือแกน x กับแกน y, ผิวทรงกระบอกเป็นผลคูณคาร์ทีเซียนระหว่างเส้นตรงกับรูปวงกลม ซึ่งความสูง รัศมี และมุมเป็นตัวกำหนดตำแหน่งที่แน่นอนของจุดต่าง ๆ มัดเส้นใย (fiber bundle) ตามปกติไม่เป็นผลคูณคาร์ทีเซียน แต่ถ้าหากมองเข้าไปใกล้ก็อาจเห็นเป็นผิวชนิดหนึ่งและนับเป็นผลคูณคาร์ทีเซียนได้ สัญกรณ์ที่สอดคล้องของกราฟบนมัดเส้นใยเรียกว่า ภาคตัด (section)


 

 

รับจำนำรถยนต์ รับจำนำรถจอด

สูติศาสตร์ ศัลยศาสตร์ออร์โธปิดิกส์ ศัลยศาสตร์ อายุรศาสตร์ กุมารเวชศาสตร์ ขมิ้นอ้อย วาซาบิ ขมิ้น มะขาม กุหลาบมอญ ทับทิม (ผลไม้) Nigella sativa ชะเอมเทศ เปราะหอม ข่า (พืช) ลูกซัด (พืช) ผักชีล้อม เทียนดำ ยี่หร่า อบเชย มะม่วงหัวแมงวัน ขึ้นฉ่าย อบเชยจีน กระวานไทย กระวานเทศ เทียนตากบ การบูร มหาหิงคุ์ โป๊ยกั้ก เทียนสัตตบุษย์ ออลสไปซ์ โรสแมรี ออริกาโน มินต์ (พืช) ผักแขยง ลาเวนเดอร์ คาวทอง ผักชีลาว เทียนแดง ผักชี กุยช่าย เชอร์วิล ใบกระวาน กะเพรา จันทน์เทศ กานพลู หอมต้นเดี่ยว ขัณฑสกร (ยา) โคแฟกเตอร์ อะดีโนซีนไตรฟอสเฟต เพปไทด์ สเตอรอยด์ พันธะคู่ กรดไขมันอิ่มตัว ไตรกลีเซอไรด์ เอสเทอร์ โอลิโกแซ็กคาไรด์ เซลลูโลส ซูโครส ไดแซ็กคาไรด์ กาแล็กโทส อัลดีไฮด์ ยางธรรมชาติ มอโนแซ็กคาไรด์ พันธะเพปไทด์ พอลิเพปไทด์ พันธะโควาเลนต์ พอลิเมอไรเซชัน ไกลโคลิพิด ฟอสโฟลิพิด โมเลกุลเล็ก พอลิแซคคาไรด์ ไมโอโกลบิน คณะเภสัชศาสตร์ ประวัติเภสัชกรรม เภสัชพลศาสตร์ เภสัชจลนศาสตร์ นิติเภสัชกรรม บริหารเภสัชกิจ เภสัชกรรมคลินิก เทคโนโลยีเภสัชกรรม เภสัชวิเคราะห์ เภสัชพฤกษศาสตร์ เภสัชเวท เภสัชอุตสาหกรรม เภสัชภัณฑ์ เภสัชเคมี พอลิแซ็กคาไรด์ ซิลิโคน รายชื่อสาขาวิชา สูตรเคมี น้ำหนักโมเลกุล ผลึกศาสตร์ ฟังก์ชันนัลกรุป อินโดล อิมิดาโซล อะซูลีน เบนโซไพรีน ฟีแนนทรีน แอนทราซีน

 

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
จำนำรถราชบุรี รถยนต์ เงินด่วน รับจำนำรถยนต์ จำนำรถยนต์ จำนำรถ 24536