กลศาสตร์ลากร็องฌ์ (อังกฤษ: Lagrangian Machanics) เป็นกลศาสตร์แบบหนึ่งที่อยู่ภายในขอบเขตของกลศาสตร์ดั้งเดิม (อังกฤษ: Classical Machanics) เช่นเดียวกับกฎของนิวตัน ซึ่งกฎข้อที่สองของนิวตันสามารถทำนายการเคลื่อนที่ของวัตถุโดยมีหัวใจสำคัญ คือ การหาแรงลัพธ์ที่กระทำต่อวัตถุ และโดยทั่วไปปัญหาทางกลศาสตร์มีความซับซ้อนค้อนข้างมาก เช่นการเคลื่อนที่ของวัตถุบนผิวทรงกลม เมื่อการคำนวณหาแรงลัพธ์มีความยากลำบาก กลศาสตร์ของนิวตันจึงไม่เหมาะสมที่จะนำมาศึกษากลศาสตร์ที่มีความซับซ้อนได้ แนวคิดด้านกลศาสตร์แบบใหม่ที่เข้ามาอธิบายกลศาสตร์ที่มีความซับซ้อน คือ กลศาสตร์ลากรองจ์ ถูกเสนอใน ค.ศ. 1788 โดย นักคณิตศาสตร์ชาวฝรั่งเศส - อิตาลี โฌแซ็ฟ-หลุยส์ ลากร็องฌ์ การคำนวณแบบกลศาสตร์ลากรองจ์สามารถนำไปประยุกต์ใช้กับการเคลื่อนที่แบบต่าง ๆ ที่มีความซับซ้อนและแก้ปัญหาด้วยกลศาสตร์นิวตันได้ยาก เช่น ปัญหาเพนดูลัมที่มีมวลมากกว่า 1 อัน ความง่ายของกลศาสตร์นี้ คือ ไม่ใช้แรงในการคำนวณ แต่จะใช้พิกัดทั่วไปและระบบพลังงานในการแก้ปัญหา เนื่องจากพลังงานเป็นปริมาณสเกลาร์การคำนวณจึงง่ายกว่าการแก้ปัญหาแบบเวกเตอร์ กลศาสตร์ลากร็องฌ์สามารถพัฒนารูปแบบสมการจนไปถึงสมการความหนาแน่นลากร็องฌ์ (Lagrangian density) การที่จะได้มาซึ่งกลศาสตร์ลากร็องฌ์มีอยู่ 3 วิธี
สมการลากร็องฌ์ เกิดจากผลต่างระหว่างพลังงานจลน์และพลังงานศักย์ภายในระบบซึ่งมีรูปแบบดังนี้
L
          
        
        (
        q
        ,
        
          
            
              q
              ˙
            
          
        
        )
        =
        T
        (
        q
        ,
        
          
            
              q
              ˙
            
          
        
        )
        −
        V
        (
        q
        )
      
    
    {\displaystyle {\mathcal {L}}(q,{\dot {q}})=T(q,{\dot {q}})-V(q)}
เมื่อ 
  
    
      
        
          
            L
          
        
      
    
    {\displaystyle {\mathcal {L}}}
  
 คือ ลากรางเจียน (Lagrangian), 
  
    
      
        T
      
    
    {\displaystyle T}
  
 คือ พลังงานจลน์ทั้งหมดของระบบ, 
  
    
      
        V
      
    
    {\displaystyle V}
  
 คือ พลังงานศักย์ทั้งหมดของระบบ
0
        =
        
          
            d
            
              d
              t
            
          
        
        
          (
          
            
              
                ∂
                
                  
                    L
                  
                
              
              
                ∂
                
                  
                    
                      
                        q
                        ˙
                      
                    
                  
                  
                    j
                  
                
              
            
          
          )
        
        −
        
          
            
              ∂
              
                
                  L
                
              
            
            
              ∂
              
                q
                
                  j
                
              
            
          
        
      
    
    {\displaystyle 0={\frac {d}{dt}}\left({\frac {\partial {\mathcal {L}}}{\partial {\dot {q}}_{j}}}\right)-{\frac {\partial {\mathcal {L}}}{\partial q_{j}}}}
จะเห็นสมการลากรองจ์ ซึ่งเกี่ยวข้องกับกฎอนุรักษ์พลังงานและเป็นสเกลาร์ แตกต่างจากสมการของนิวตันซึ่งเกี่ยวข้องกับแรงและเป็นปริมาณเวกเตอร์
ทฤษฎีการแกว่งกวัดเป็นมุมน้อย ๆ อาศัยแนวคิดพื้นฐานมาจากสมการการเคลื่อนที่ของลากร็องฌ์ สมการการเคลื่อนที่ของฮามิลตัน อนุกรมเทย์เลอร์ และกฎการเคลื่อนที่ของนิวตัน โดยใช้เมตริกซ์เทนเซอร์ในการแก้ปัญหา เพื่อเข้าใจทฤษฎีการแกว่งกวัดเป็นมุมน้อย ๆ เราจำเป็นต้องรู้ความสัมพันธ์ของพลังงานศักย์กับการสมดุล ว่าด้วยเงื่อนไขของการเสถียรของระบบ ซึ่งเป็นพื้นฐานที่จะเข้าในทฤษฎีนี้ ซึ่งสามารถประยุกต์ใช้กับการเคลื่อนที่แบบเสถียร เมื่อระบบสมดุลเราจะได้ว่า
  
    
      
        
          Q
          
            k
          
        
        =
        (
        
          
            
              ∂
              
                V
              
            
            
              ∂
              
                q
                
                  k
                
              
            
          
        
        )
        =
        0
      
    
    {\displaystyle Q_{k}=({\frac {\partial \mathbf {V} }{\partial q_{k}}})=0}
  
  -- 
สมการที่  แสดงพลังงานศักย์ V มี extremun value ในระบบที่สมดุล สรุปได้ว่าภาวะสมดุลเสถียรเกิดขึ้น เมื่อระบบมีจุดสมดุลที่มีพลังงานศักย์ต่ำที่สุด สำหรับกรณี 
  
    
      
        V
        =
        V
        (
        q
        )
      
    
    {\displaystyle V=V(q)}
  
 จะมีจุดสมดุล
  
    
      
        
          F
        
        =
        −
        
          
            
              
                d
              
              
                V
              
            
            
              
                d
              
              q
            
          
        
        =
        0
      
    
    {\displaystyle \mathbf {F} =-{\frac {\mathrm {d} \mathbf {V} }{\mathrm {d} q}}=0}
  
 และ 
  
    
      
        V
        =
        
          V
          
            0
          
        
      
    
    {\displaystyle V=V_{0}}
  
 ซึ่งจะมีจุดสมดุลดังนี้
ถ้า 
  
    
      
        
          
            
              
                d
                
                  2
                
              
              
                V
              
            
            
              d
              
                q
                
                  2
                
              
            
          
        
        =
        0
      
    
    {\displaystyle {\frac {d^{2}\mathbf {V} }{dq^{2}}}=0}
  
 เราจะต้องพิจารณาอนุพันธ์ที่สูงขึ้นไปคือ
การประยุกต์ใช้ทฤษฎีการแกว่งกวัดเป็นมุมน้อย ๆ สามารถนำไปอธิบายการเคลื่อนที่ของลูกตุ้มที่ติดมวลมากกว่าหนึ่ง หรือวัตถุติดสปริง หรือวัตถุที่มีการสั่นเป็นแอมปลิจูดน้อย ๆ
ทฤษฎีการสั่นอย่างเล็กน้อย(Small oscillation) ในการแก้ไขปัญหาบางปัญหาที่มีความซับซ้อนจนเราไม่สามารถหาผลเฉลยของสมการอนุพันธ์เพื่ออธิบายลักษณะการเคลื่อนที่ได้ จึงมีวิธีการที่จะประมาณลักษณะการเคลื่อนที่โดยพิจารณนาลักษณะการเคลื่อนที่รอบ ๆ จุดสมดุล (Equilibrium position) การเคลื่อนที่ในลักษณะนี้ เรียกว่า การสั่นอย่างเล็กน้อย (Small oscillation)
ทฤษฎีการสั่นอย่างเล็กน้อยพบตัวอย่างการใช้งานทางด้านกายภาพอย่างแพร่หลายในความรู้เรื่องเสียง (Acoustics) การแผ่รังสีของโมเลกุล (Molecular spectra)
และวงจรคู่ควบ (Coupled electrical circuit)
กฏของนิวตัน เพื่อความเรียบง่าย กฎของนิวตันสามารถอธิบายสำหรับอนุภาคหนึ่ง ๆ โดยที่ไม่มีการสูญเสียมวลมากนัก (สำหรับระบบของอนุภาค N สมการเหล่านี้ใช้กับอนุภาคแต่ละตัวในระบบ)
สมการการเคลื่อนที่ของอนุภาคของมวล m คือกฎข้อที่สองของนิวตันใน ค.ศ. 1687 ซึ่งเป็นการใช้สัญกรณ์เวกเตอร์สมัยใหม่ ณ ขณะนั้น
เมื่อ a คือความเร่ง และ F คือแรงลัพธ์ ที่กระทำกับระบบ ซึ่งอยู่ในระบบ 3 มิติ แล้วระบบนี้จะรวมกับสมการเชิงอนุพันธ์สามัญเพื่อใช้ในการแก้ปัญหา เนื่องจากมีสมการเวกเตอร์ทั้งสามตัวเป็นองค์ประกอบ การแก้ปัญหาคือ ตำแหน่งของเวกเตอร์ r ของอนุภาคในเวลา t  การแก้ปัญหาที่มี R เป็นเวกเตอร์ตำแหน่งของอนุภาคที่เวลา t ภายใต้เงื่อนไขเริ่มต้นของ r และ v เมื่อ t = 0
กฎของนิวตันเป็นเรื่องง่ายที่จะทำมาพิจารณาใช้ในพิกัดคาร์ทีเซียน แต่พิกัดคาร์ทีเซียนก็ไม่สะดวกเสมอไป และสำหรับระบบพิกัดอื่น ๆ การใช้สมการการเคลื่อนที่ของนิวตันจะกลายเป็นเรื่องซับซ้อน ในชุดของ พิกัดเชิงเส้นโค้ง (curvilinear coordinates) ξ = (ξ1, ξ2, ξ3) กฎในดรรชนีเทนเซอร์ (tensor) คือฟอร์มลากร็องฌ์
ในกรณีที่ Fa เป็นส่วนประกอบความไม่แปรผัน ของแรงที่เกิดขึ้นกับอนุภาค, Γabc   เป็นสัญลักษณ์ Christoffel ของชนิดที่สอง
เป็นพลังงานจลน์ของอนุภาค และ gbc เป็นส่วนประกอบที่แปรปรวนของเมตริกซ์เทนเซอร์ของระบบพิกัดแบบโค้ง 
ดัชนีทั้งหมด a, b, c แต่ละค่าจะมีค่า 1, 2, 3 ซึ่งพิกัดเส้นโค้งไม่เหมือนกันกับพิกัดทั่วไป
ส่วนประกอบของการเร่งในแง่ของสัญลักษณ์ Christoffel สามารถหลีกเลี่ยงได้ โดยประเมินอนุพันธ์ของพลังงานจลน์แทน
ถ้าไม่มีแรงที่เกิดขึ้นกับอนุภาค คือ F = 0 จะไม่เกิดการเร่ง แต่จะเคลื่อนที่ด้วยความเร็วคงที่เป็นเส้นตรง ในทางคณิตศาสตร์การแก้ปัญหาของสมการเชิงอนุพันธ์คือจีออเดสิก (geodesics) นั่นคือเส้นโค้งของความยาวสุดขีดระหว่างจุดสองจุดในพื้นที่ (ซึ่งอาจจะน้อยที่สุด ดังนั้นคือเส้นทางที่สั้นที่สุด แต่ก็ไม่จำเป็น) ในพื้นที่จริงที่ว่างเปล่า แบบ 3D  geodesics จะเป็นเส้นตรงเท่านั้น
ดังนั้นสำหรับอนุภาคอิสระ กฎข้อที่สองของนิวตันจึงเกิดขึ้นพร้อมกับสมการเชิง geodesic และระบุอนุภาคอิสระตาม geodesics ซึ่งเป็นวิถีขีดสุดที่สามารถเคลื่อนที่ไปได้ ถ้าอนุภาคตกอยู่ภายใต้แรง F ที่ไม่เท่ากับ 0 อนุภาคจะมีความเร่งขึ้นเนื่องจากแรงที่กระทำต่อมัน และจะออกไปจาก geodesics ที่จะปฏิบัติตามถ้าเป็นอิสระ ด้วยความเหมาะสมของปริมาณที่กำหนดไว้ในที่ราบแบบแบนด์เวิร์ค 3 มิติ จนถึงกาลอวกาศโค้ง 4 มิติ รูปแบบข้างต้นของกฎนิวตันจะนำมาสู่ทฤษฎีสัมพัทธภาพทั่วไปของไอน์สไตน์ซึ่งในกรณีนี้อนุภาคอิสระจะตาม geodesics ในส่วนโค้งกาล-อวกาศซึ่งไม่มี "เส้นตรง" กรณีสามัญ
อย่างไรก็ตามเรายังจำเป็นต้องทราบผลรวมของแรง F ที่กระทำกับอนุภาค ซึ่งจะต้องใช้แรงที่ไม่มีข้อจำกัด บวกกับแรงที่มีข้อจำกัด C
แรงข้อจำกัด อาจมีความซับซ้อน เนื่องจากโดยทั่วไปแล้วจะขึ้นอยู่กับเวลา นอกจากนี้ถ้ามีข้อจำกัด ขอบเขตพิกัดไม่ได้เป็นอิสระ แต่เกี่ยวขึ้นกับสมการข้อจำกัดอย่างน้อยหนึ่งข้อ
แรงข้อจำกัด สามารถถูกกำจัดออกจากสมการของการเคลื่อนที่ จึงทำให้ แรงที่ไม่มีข้อจำกัดจะคงอยู่ หรือรวมอยู่ในสมการ ข้อจำกัดของสมการการเคลื่อนที่