ค้นหา
  
Search Engine Optimization Services (SEO)

การป้อนกลับสถานะแบบเต็ม

การป้อนกลับสถานะแบบเต็ม (อังกฤษ: Full state feedback ; FSF) หรือ การวางขั้ว (pole placement) ซึ่งเป็นวิธีการออกแบบตัวควบคุมสำหรับป้อนกลับในทฤษฎีระบบควบคุม เพื่อวางขั้วของระบบวงปิดในเป็นไปในตำแหน่งที่ผู้ออกแบบต้องการในระนาบของผลการแปลงลาปลาซ (s-plane) โดยวางขั้วในที่นี้หมายถึงการกำหนดค่าลักษณะเฉพาะของตัวระบบ (ค่าลักษณะเฉพาะเมทริกซ์ A ในสมการแบบจำลองปริภูมิสถานะ) นั้นมีความเกี่ยวพันกับเสถียรภาพของตัวระบบโดยตรงตามทฤษฎีระบบควบคุมเชิงเส้น และวิธีการนี้ใช้ได้กับเฉพาะระบบที่มีสภาพควบคุมได้เท่านั้น ซึ่งนั้นหมายความว่าในที่นี้เราถือว่าเราสามารถวัดค่าสถานะได้ทุกค่าจากตัวตรวจวัด ซึ่งเป็นกรณีที่อุดมคติมากในความเป็นจริง

เมื่อทำการป้อนกลับโดยใช้ค่าสถานะทุกตัว x_{\displaystyle {\underline {x}}} แล้ว (เพราะถือว่าเราสามารถวัดค่าสถานะได้ทุกค่าจากตัวตรวจวัด) สัญญาณขาเข้า u_{\displaystyle {\underline {u}}} คือ

ขั้วของระบบที่ได้รับการป้อนกลับแล้วจะหาได้จากสมการลักษณะเฉพาะ det[sI?(A?BK)]{\displaystyle \det \left[s{\textbf {I}}-\left({\textbf {A}}-{\textbf {B}}{\textbf {K}}\right)\right]} และโดยเทียบสัมประสิทธิ์ ของสมการนี้กับ สมการลักษณะเฉพาะที่เราต้องการ ผู้ออกแบบก็จะสามารถหาค่าของเมทริกซ์ K{\displaystyle {\textbf {K}}} ที่ใช้ในการควบคุมระบบให้มีขั้วตามสมการลักษณะเฉพาะที่เราต้องการได้

จะพบว่าเมื่อไม่มีการควบคุมนั้น ตัวระบบวงปิดมีขั้วที่ s=?1{\displaystyle s=-1} และ s=?2{\displaystyle s=-2} แต่ถ้าเราต้องการให้ระบบวงปิดมีขั้วที่ s=?1{\displaystyle s=-1} และd s=?5{\displaystyle s=-5} แทน (ซึ่งมีสมการลักษณะเฉพาะคือ s2+6s+5=0{\displaystyle s^{2}+6s+5=0} ) .

ขั้นตอนการการป้อนกลับสถานะแบบเต็ม เป็นดังนี้คือ กำหนดให้ ค่าคงที่ K=[k1k2]{\displaystyle \mathbf {K} ={\begin{bmatrix}k_{1}&k_{2}\end{bmatrix}}}

จะเห็นได้ว่าการกำหนดให้ u_=?Kx_{\displaystyle {\underline {u}}=-\mathbf {K} {\underline {x}}} (ซึ้งก็คือการป้อนสถานะแบบเต็มนั้นเอง) ทำให้ระบบวงปิดมีขั้วและคุณสมบัติตามที่เราต้องการนั้นเอง

หมายเหตุ: ตัวอย่างข้างต้นนี้สำหรับกรณี สัญญาณเข้าทางเดียวและสัญญาณขาออกทางเดียว (Single-Input and Single-Output) เท่านั้น ในกรณี สัญญาณขาเข้าหลายทางและสัญญาณขาออกหลายทาง (Multiple-Input and Multiple-Output) ค่า เมทริกซ์ K{\displaystyle {\textbf {K}}} อาจจะมีได้หลายค่าและให้ผลต่อระบบวงปิดในแบบเดียวกัน ดังนั้นการเลือกใช้ K ที่ดีที่สุดและเหมาะกับสภาพความเป็นจริงของปัญหาก็เป็นอีกประเด้นหนึ่งที่ผู้ออกแบบต้องพิจารณา ซึ่งโดยปรกติแล้วเราจะนิยมใช้วิธีการ linear-quadratic regulator กันมากกว่า


 

 

รับจำนำรถยนต์ รับจำนำรถจอด

แรง (ฟิสิกส์) ความยาว การเคลื่อนที่ ทฤษฎีเคออส กลศาสตร์แบบลากรางช์ เอนริโก แฟร์มี สมมาตรยิ่งยวด CERN Large Hadron Collider ไอน์สไตน์ ทฤษฎีสัมพัทธภาพทั่วไป กาลิเลโอ ฟิสิกส์อนุภาค วิศวกรรมวัสดุ เซมิคอนดักเตอร์ นาโนเมตร วัสดุนาโน วัสดุฉลาด วัสดุเชิงก้าวหน้า วัสดุชีวภาพ พอลิเมอร์ เซรามิก สเปกโตรสโกปี อุณหเคมี ไฟฟ้าเคมี เคมีเชิงฟิสิกส์ โลหะอินทรีย์เคมี เคมีพอลิเมอร์ เคมีนิวเคลียร์ ชีววิทยาโมเลกุล เคมีเวชภัณฑ์ เคมีดาราศาสตร์ เคมีไคเนติกส์ สารประกอบอนินทรีย์ สารประกอบเคมี สารประกอบ John Dalton ทฤษฎีโฟลจิสตัน อ็องตวน ลาวัวซีเย Robert Boyle ปฏิกิริยาเคมี รายชื่อคณะวิทยาศาสตร์ในประเทศไทย เคมีสิ่งแวดล้อม วิทยาศาสตร์สิ่งแวดล้อม Social psychology วิทยาศาสตร์สังคม เทคนิคการแพทย์ เวชศาสตร์ พยาธิวิทยา เนื้องอกวิทยา ทัศนมาตรศาสตร์ Pharmacy บรรณารักษศาสตร์และสารนิเทศศาสตร์ วิทยาศาสตร์พุทธิปัญญา สารสนเทศศาสตร์ วิทยาการสารสนเทศ สัตววิทยา วิทยาไวรัส ประสาทวิทยาศาสตร์ อณูชีววิทยา จุลชีววิทยา วิทยาภูมิคุ้มกัน มีนวิทยา มิญชวิทยา กีฏวิทยา Developmental biology วิทยาเซลล์ ชีววิทยาของเซลล์ วิทยาแผ่นดินไหว ชลธารวิทยา สมุทรศาสตร์ เคมีความร้อน เคมีไฟฟ้า เคมีการคำนวณ เคมีวิเคราะห์ Particle physics พลศาสตร์ของไหล พลศาสตร์ สวนศาสตร์ ฟิสิกส์เชิงทฤษฎี โป๊ป ความเรียง เรอเน เดส์การตส์ การสังเกต การทดลอง ฟรานซิส เบคอน กระบวนการทางวิทยาศาสตร์ ความรู้เชิงประจักษ์ คณิตตรรกศาสตร์ เครือข่ายคอมพิวเตอร์เพื่อโรงเรียนไทย ไม้บรรทัด กระดูกนาเปียร์ ลูกคิด การแข่งขันคณิตศาสตร์ รางวัลอาเบล เหรียญฟิลด์ส ปัญหาของฮิลแบร์ท กลุ่มความซับซ้อน พี และ เอ็นพี ข้อความคาดการณ์ของปวงกาเร สมมติฐานความต่อเนื่อง

 

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
จำนำรถราชบุรี รถยนต์ เงินด่วน รับจำนำรถยนต์ จำนำรถยนต์ จำนำรถ 24187