ค้นหา
  
Search Engine Optimization Services (SEO)

ทฤษฎีการวัด

ทฤษฎีเมเชอร์ (อังกฤษ: measure theory) เป็นสาขาทางคณิตศาสตร์ของคณิตวิเคราะห์เชิงจริง เพื่อใช้อธิบายนิยามทางคณิตศาสตร์ของ "ความยาว" "พื้นที่" "ปริมาตร" หรืออะไรก็ตามที่วัดได้ ตัวอย่างการนำทฤษฎีเมเชอร์ไปใช้ในสาขาอื่น คือ การที่นักคณิตศาสตร์หลายท่านมองว่าความน่าจะเป็นเหมาะสมเป็นปริมาณเมเชอร์ประเภทหนึ่ง จึงได้ใช้ทฤษฎีเมเชอร์ในการพัฒนาทฤษฎีความน่าจะเป็นเชิงคณิตศาสตร์ (mathematical probability) (หรือทฤษฎีความน่าจะเป็นยุคใหม่) ขึ้น ก่อให้เกิดความก้าวหน้ากับทฤษฎีความน่าจะเป็นเป็นอย่างมาก

อย่างไรก็ตาม จุดประสงค์เริ่มต้นของการสร้างสาขาทฤษฎีเมเชอร์คือ การนำไปใช้กับทฤษฎีของปริพันธ์ เพื่อขยายทฤษฎีปริพันธ์ของรีมันน์ไปยังขอบเขตที่กว้างขึ้น โดยนักคณิตศาสตร์ที่มีส่วนสำคัญในการคิดค้นทฤษฎีเมเชอร์ในยุคแรก ๆ คือ จูเซ็ปเป้ เพียโน มารี คามิลเลอร์ จอร์แดน เอมีล โบเรล และอองรี เลอเบ็ก

จากคำอธิบายอย่างหยาบข้างต้น จะเห็นว่าแม้ในนิยามอย่างเป็นทางการของทฤษฎีเมเชอร์ในหัวข้อต่อไปจะดูซับซ้อน แต่แนวคิดของทฤษฎีเมเชอร์นั้นง่ายและสมเหตุสมผลเป็นอย่างยิ่ง.

ในทางคณิตศาสตร์ เมเชอร์: ? คือ ฟังก์ชันที่ส่งค่าจากโดเมนประเภทซิกมาแอลจีบรา ? ที่นิยามบนเซต X ไปยังเรนจ์ที่เป็นจำนวนจริงบวกขยาย [0, ?] และ ? ต้องมีคุณสมบัติสองข้อต่อไปนี้

2. มี สภาพการบวกนับได้ (countable additivity) หรืออาจเรียกว่ามีสภาพการบวกแบบซิกมา (?-additivity) : ถ้ากำหนดให้ E1, E2, E3, ... เป็นลำดับแบบนับได้ของเซตที่ไม่มีส่วนร่วมเป็นคู่ ๆใน ? แล้ว,

เราจะใช้สัญกรณ์ (X,?,?) เพื่อนิยามปริภูมิเมเชอร์ หรืออาจเรียกว่าปริภูมิเมเชอร์. นั่นคือปริภูมิเมเชอร์ประกอบไปด้วยเซต X, ซิกมาแอลจีบรา บนเซต X และฟังก์ชันที่นิยามบน ซิกมาแอลจีบรา นั้น. อนึ่ง แต่ละสมาชิกใน ? จะถูกเรียกว่าเซตที่สามารถวัดได้ (measurable sets).

ในทฤษฎีความน่าจะเป็นเชิงคณิตศาสตร์, ฟังก์ชันความน่าจะเป็น ก็คือ ฟังก์ชันเมเชอร์ที่มีเงื่อนไขเพิ่มเติม คือ

นอกจากนั้นมักจะใช้สัญกรณ์ (?,F,P){\displaystyle (\Omega ,{\mathfrak {F}},P)} แทนปริภูมิความน่าจะเป็น แทนที่จะใช้สัญกรณ์ (X,?,?) เนื่องจาก X มักใช้แทนตัวแปรสุ่ม และใช้ ? แทนค่าเฉลี่ย .

คำอธิบายอย่างหยาบ: ถ้าวัตถุหนึ่งและวัตถุสองสามารถวัดค่าได้ และวัตถุแรกจริง ๆ แล้วเป็นเพียงส่วนประกอบของวัตถุสอง ค่าที่วัดได้ของวัตถุสองจะมากกว่าหรือเท่ากับวัตถุแรกเสมอ

นอกจากนั้นเรายังได้ว่า ถ้ากำหนดให้ E1,E2,E3,...{\displaystyle E_{1},E_{2},E_{3},...} เป็นเซตใน ? และ En?En+1,?n?N{\displaystyle E_{n}\subseteq E_{n+1},\forall n\in \mathbb {N} }, แล้วจะได้ว่า ?n=1?En{\displaystyle \bigcup _{n=1}^{\infty }E_{n}} อยู่ใน ? ด้วยและ

กำหนดให้ E1,E2,E3,...{\displaystyle E_{1},E_{2},E_{3},...} เป็นเซตใน ? และ En+1?En,?n?N{\displaystyle E_{n+1}\subseteq E_{n},\forall n\in \mathbb {N} }, แล้วจะได้ว่า ?n=1?En{\displaystyle \bigcap _{n=1}^{\infty }E_{n}} อยู่ใน ? ด้วยและ ยิ่งไปกว่านั้น ถ้ามีสมาชิก En{\displaystyle E_{n}} อย่างน้อยหนึ่งตัวที่มีค่าเมเชอร์จำกัด เราจะได้ว่า

คุณสมบัตินี้ไม่เป็นจริงถ้าไม่มีสมาชิก En{\displaystyle E_{n}} ใด ๆ เลยที่มีเมเชอร์จำกัด (คือมีค่าเมเชอร์เป็นอนันต์ทุกตัว) ตัวอย่างเช่น ถ้าให้ n ? N,

เราจะได้ว่าทุก ๆ En{\displaystyle E_{n}} มีเมเชอร์อนันต์แต่ว่าอินเตอร์เซ็กชันของเซตทั้งหมดมีเมเชอร์เป็นศูนย์


 

 

รับจำนำรถยนต์ รับจำนำรถจอด

แรง (ฟิสิกส์) ความยาว การเคลื่อนที่ ทฤษฎีเคออส กลศาสตร์แบบลากรางช์ เอนริโก แฟร์มี สมมาตรยิ่งยวด CERN Large Hadron Collider ไอน์สไตน์ ทฤษฎีสัมพัทธภาพทั่วไป กาลิเลโอ ฟิสิกส์อนุภาค วิศวกรรมวัสดุ เซมิคอนดักเตอร์ นาโนเมตร วัสดุนาโน วัสดุฉลาด วัสดุเชิงก้าวหน้า วัสดุชีวภาพ พอลิเมอร์ เซรามิก สเปกโตรสโกปี อุณหเคมี ไฟฟ้าเคมี เคมีเชิงฟิสิกส์ โลหะอินทรีย์เคมี เคมีพอลิเมอร์ เคมีนิวเคลียร์ ชีววิทยาโมเลกุล เคมีเวชภัณฑ์ เคมีดาราศาสตร์ เคมีไคเนติกส์ สารประกอบอนินทรีย์ สารประกอบเคมี สารประกอบ John Dalton ทฤษฎีโฟลจิสตัน อ็องตวน ลาวัวซีเย Robert Boyle ปฏิกิริยาเคมี รายชื่อคณะวิทยาศาสตร์ในประเทศไทย เคมีสิ่งแวดล้อม วิทยาศาสตร์สิ่งแวดล้อม Social psychology วิทยาศาสตร์สังคม เทคนิคการแพทย์ เวชศาสตร์ พยาธิวิทยา เนื้องอกวิทยา ทัศนมาตรศาสตร์ Pharmacy บรรณารักษศาสตร์และสารนิเทศศาสตร์ วิทยาศาสตร์พุทธิปัญญา สารสนเทศศาสตร์ วิทยาการสารสนเทศ สัตววิทยา วิทยาไวรัส ประสาทวิทยาศาสตร์ อณูชีววิทยา จุลชีววิทยา วิทยาภูมิคุ้มกัน มีนวิทยา มิญชวิทยา กีฏวิทยา Developmental biology วิทยาเซลล์ ชีววิทยาของเซลล์ วิทยาแผ่นดินไหว ชลธารวิทยา สมุทรศาสตร์ เคมีความร้อน เคมีไฟฟ้า เคมีการคำนวณ เคมีวิเคราะห์ Particle physics พลศาสตร์ของไหล พลศาสตร์ สวนศาสตร์ ฟิสิกส์เชิงทฤษฎี โป๊ป ความเรียง เรอเน เดส์การตส์ การสังเกต การทดลอง ฟรานซิส เบคอน กระบวนการทางวิทยาศาสตร์ ความรู้เชิงประจักษ์ คณิตตรรกศาสตร์ เครือข่ายคอมพิวเตอร์เพื่อโรงเรียนไทย ไม้บรรทัด กระดูกนาเปียร์ ลูกคิด การแข่งขันคณิตศาสตร์ รางวัลอาเบล เหรียญฟิลด์ส ปัญหาของฮิลแบร์ท กลุ่มความซับซ้อน พี และ เอ็นพี ข้อความคาดการณ์ของปวงกาเร สมมติฐานความต่อเนื่อง

 

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
จำนำรถราชบุรี รถยนต์ เงินด่วน รับจำนำรถยนต์ จำนำรถยนต์ จำนำรถ 24187