ค้นหา
  
Search Engine Optimization Services (SEO)

จำนวนจริง

ในทางคณิตศาสตร์ จำนวนจริง คือจำนวนที่มีลักษณะเป็นปริมาณที่สามารถแสดงให้เห็นภาพด้วยจุดบนเส้นตรงที่มีความยาวไม่สิ้นสุด (เส้นจำนวน) ได้ จำนวนจริงทั้งหมดประกอบด้วยจำนวนตรรกยะ (จำนวนเต็ม เช่น 4 , 0 , − 2048 {\displaystyle 4,0,-2048} และเศษส่วน เช่น 3 4 {\textstyle {\frac {3}{4}}} ) และจำนวนอตรรกยะ (เช่น 2 {\displaystyle {\sqrt {2}}} หรือ π {\displaystyle \pi } ) คำว่าจำนวนจริงนั้นบัญญัติขึ้นเพื่อแยกความแตกต่างจากจำนวนจินตภาพ จำนวนจริงสามารถเขียนออกมาได้ในรูปของทศนิยมที่อาจไม่รู้จบ

เซตของจำนวนจริงมีสัญลักษณ์ที่นิยมใช้แทนคือ R หรือ ℝ ซึ่งเซตของจำนวนจริงนี้มีลักษณะเป็นเซตอนันต์ที่นับไม่ได้ จำนวนจริงเป็นศูนย์กลางการศึกษาในสาขาการวิเคราะห์เชิงจริง (real analysis)

มีหลักเกณฑ์ในการแบ่งจำนวนจริงอยู่หลายเกณฑ์ เช่น จำนวนตรรกยะ หรือ จำนวนอตรรกยะ; จำนวนพีชคณิต (algebraic number) หรือ จำนวนอดิศัย; และ จำนวนบวก จำนวนลบ หรือ ศูนย์

จำนวนจริงแทนปริมาณที่ต่อเนื่องกัน โดยทฤษฎีอาจแทนได้ด้วยทศนิยมไม่รู้จบ และมักจะเขียนในรูปเช่น 324.823211247 … {\displaystyle 324.823211247\ldots } ซึ่ง จุดสามจุด แทนความหมายว่ายังมีหลักต่อ ๆ ไปอีก ไม่ว่าจะยาวเพียงใดก็ตาม

การวัดในวิทยาศาสตร์กายภาพเกือบทั้งหมดจะเป็นการประมาณค่าสู่จำนวนจริง การเขียนในรูปทศนิยม (ซึ่งเป็นจำนวนตรรกยะที่สามารถเขียนเป็นอัตราส่วนที่มีตัวส่วนชัดเจน) ไม่เพียงแต่ทำให้กระชับ แต่ยังทำให้สามารถเข้าใจถึงจำนวนจริงที่แทนได้ในระดับหนึ่งอีกด้วย

จำนวนจริงจำนวนหนึ่งจะกล่าวได้ว่าเป็นจำนวนที่คำนวณได้ (computable) ถ้ามีขั้นตอนวิธีที่สามารถให้ได้ตัวเลขแทนออกมา เนื่องจากมีจำนวนขั้นตอนวิธีนับได้ (countably infinite) แต่มีจำนวนของจำนวนจริงนับไม่ได้ จำนวนจริงส่วนมากจึงไม่เป็นจำนวนที่คำนวณได้ กลุ่มลัทธิเค้าโครง (constructivists) ยอมรับการมีตัวตนของจำนวนที่คำนวณได้เท่านั้น เซตของจำนวนที่ให้นิยามได้นั้นใหญ่กว่า แต่ก็ยังนับได้

ส่วนมากคอมพิวเตอร์เพียงประมาณค่าของจำนวนจริงเท่านั้น โดยทั่วไปแล้ว คอมพิวเตอร์สามารถแทนค่าจำนวนตรรกยะเพียงกลุ่มหนึ่งได้อย่างแม่นยำโดยใช้ตัวเลขจุดลอยตัวหรือตัวเลขจุดตรึง จำนวนตรรกยะเหล่านี้ใช้เป็นค่าประมาณของจำนวนจริงข้างเคียงอื่น ๆ เลขคณิตกำหนดความเที่ยงได้ (arbitrary-precision arithmetic) เป็นขั้นตอนในการแทนจำนวนตรรกยะโดยจำกัดเพียงหน่วยความจำที่มี แต่โดยทั่วไปจะใช้จำนวนของบิตความละเอียดคงที่กำหนดโดยขนาดของรีจิสเตอร์หน่วยประมวลผล (processor register) นอกเหนือจากจำนวนตรรกยะเหล่านี้ ระบบพีชคณิตคอมพิวเตอร์สามารถจัดการจำนวนอตรรกยะจำนวนมาก (นับได้) อย่างแม่นยำโดยบันทึกรูปแบบเชิงพีชคณิต (เช่น 2 {\textstyle {\sqrt {2}}} ) แทนค่าประมาณตรรกยะ

นักคณิตศาสตร์ใช้สัญลักษณ์ R (หรือ R {\displaystyle \mathbb {R} } - อักษร R ในแบบอักษร blackboard bold) แทนเซตของจำนวนจริง สัญกรณ์ Rn แทนปริภูมิ n มิติของจำนวนจริง เช่น สมาชิกตัวหนึ่งจาก R3 ประกอบด้วยจำนวนจริงสามจำนวนและระบุตำแหน่งบนปริภูมิสามมิติ

จำนวนจริงสามารถสร้างเป็นส่วนสมบูรณ์ของจำนวนตรรกยะ สำหรับรายละเอียดและการสร้างจำนวนจริงวิธีอื่น ๆ ดูที่ construction of real numbers (การสร้างจำนวนจริง)

คุณสมบัติสุดท้ายนี้เป็นตัวแบ่งแยกจำนวนจริงออกจากจำนวนตรรกยะ ตัวอย่างเช่น เซตของจำนวนตรรกยะที่มีกำลังสองน้อยกว่า 2 มีขอบเขตบน (เช่น 1.5) แต่ไม่มีขอบเขตบนน้อยสุดที่เป็นจำนวนตรรกยะ เพราะว่ารากที่สองของ 2 ไม่เป็นจำนวนตรรกยะ

จำนวนจริงนั้นมีคุณสมบัติข้างต้นเป็นเอกลักษณ์ พูดอย่างถูกต้องได้ว่า ถ้ามีฟีลด์อันดับที่มีความบริบูรณ์เดเดคินท์ 2 ฟีลด์ R1 และ R2 จะมีสมสัณฐานฟีลด์ที่เป็นเอกลักษณ์จาก R1 ไปยัง R2 ทำให้เราสามารถมองว่าทั้งคู่เป็นวัตถุเดียวกัน

เหตุผลหลักในการแนะนำจำนวนจริงก็เพราะว่าจำนวนจริงมีลิมิต พูดอย่างเป็นหลักการแล้ว จำนวนจริงมีความบริบูรณ์ โดยนัยของ ปริภูมิอิงระยะทาง หรือ ปริภูมิเอกรูป ซึ่งต่างจากความบริบูรณ์เดเดคินท์เกี่ยวกับอันดับในส่วนที่แล้ว มีความหมายดังต่อไปนี้

ลำดับ (xn) ของจำนวนจริงจะเรียกว่า ลำดับโคชี ถ้าสำหรับ ε > 0 ใด ๆ มีจำนวนเต็ม N (อาจขึ้นอยู่กับ ε) ซึ่งระยะทาง |xn − xm| น้อยกว่า ε โดยที่ n และ m มากกว่า N และอาจกล่าวได้ว่าลำดับเป็นลำดับโคชีโคชีถ้าสมาชิก xn ของมันในที่สุดเข้าใกล้กันเพียงพอ

ลำดับ (xn) ลู่เข้าสู่ลิมิต x ถ้าสำหรับ ε > 0 ใด ๆ มีจำนวนเต็ม N (อาจขึ้นอยู่กับ ε) ซึ่งระยะทาง |xn − x| น้อยกว่า ε โดยที่ n มากกว่า N และอาจกล่าวได้ว่าลำดับมีลิมิต x ถ้าสมาชิกของมันในที่สุดเข้าใกล้ x เพียงพอ

เป็นเรื่องง่ายที่จะเห็นว่าทุกลำดับลู่เข้าเป็นลำดับโคชี ข้อเท็จจริงที่สำคัญหนึ่งเกี่ยวกับจำนวนจริงคือบทกลับของมันก็เป็นจริงเช่นกัน :

สังเกตว่าจำนวนตรรกยะนั้นไม่บริบูรณ์ เช่น ลำดับ (1, 1.4, 1.41, 1.414, 1.4142, 1.41421, ...) เป็นลำดับโคชีแต่ไม่ลู่เข้าสู่จำนวนตรรกยะจำนวนใดจำนวนหนึ่ง (ในทางกลับกัน ในระบบจำนวนจริง มันลู่เข้าสู่รากที่สองของ 2)

การมีอยู่ของลิมิตของลำดับโคชีทำให้แคลคูลัสใช้การได้ รวมไปถึงการประยุกต์มากมายของมันด้วย การทดสอบเชิงตัวเลขมาตรฐานเพื่อระบุว่าลำดับนั้นมีลิมิตหรือไม่คือการทดสอบว่ามันเป็นลำดับโคชีหรือไม่ ถ้าเราไม่ทราบลิมิตเหล่านั้นล่วงหน้า

สามารถทำให้มีค่าน้อยลงเพียงพอโดยเลือก N ที่มีค่ามากเพียงพอ นี่พิสูจน์ว่าลำดับนี้เป็นลำดับโคชี ดังนั้นเรารู้ว่าลำดับลู่เข้าแม้กระทั่งเราไม่รู้ว่าลิมิตคืออะไร


 

 

รับจำนำรถยนต์ รับจำนำรถจอด

เทียนดำ ยี่หร่า อบเชย มะม่วงหัวแมงวัน ขึ้นฉ่าย อบเชยจีน กระวานไทย กระวานเทศ เทียนตากบ การบูร มหาหิงคุ์ โป๊ยกั้ก เทียนสัตตบุษย์ ออลสไปซ์ โรสแมรี ออริกาโน มินต์ (พืช) ผักแขยง ลาเวนเดอร์ คาวทอง ผักชีลาว เทียนแดง ผักชี กุยช่าย เชอร์วิล ใบกระวาน กะเพรา จันทน์เทศ กานพลู หอมต้นเดี่ยว ขัณฑสกร (ยา) โคแฟกเตอร์ อะดีโนซีนไตรฟอสเฟต เพปไทด์ สเตอรอยด์ พันธะคู่ กรดไขมันอิ่มตัว ไตรกลีเซอไรด์ เอสเทอร์ โอลิโกแซ็กคาไรด์ เซลลูโลส ซูโครส ไดแซ็กคาไรด์ กาแล็กโทส อัลดีไฮด์ ยางธรรมชาติ มอโนแซ็กคาไรด์ พันธะเพปไทด์ พอลิเพปไทด์ พันธะโควาเลนต์ พอลิเมอไรเซชัน ไกลโคลิพิด ฟอสโฟลิพิด โมเลกุลเล็ก พอลิแซคคาไรด์ ไมโอโกลบิน คณะเภสัชศาสตร์ ประวัติเภสัชกรรม เภสัชพลศาสตร์ เภสัชจลนศาสตร์ นิติเภสัชกรรม บริหารเภสัชกิจ เภสัชกรรมคลินิก เทคโนโลยีเภสัชกรรม เภสัชวิเคราะห์ เภสัชพฤกษศาสตร์ เภสัชเวท เภสัชอุตสาหกรรม เภสัชภัณฑ์ เภสัชเคมี พอลิแซ็กคาไรด์ ซิลิโคน รายชื่อสาขาวิชา สูตรเคมี น้ำหนักโมเลกุล ผลึกศาสตร์ ฟังก์ชันนัลกรุป อินโดล อิมิดาโซล อะซูลีน เบนโซไพรีน ฟีแนนทรีน แอนทราซีน แนฟทาลีน โทลูอีน เบนซีน แอลไคน์ แอลคีน อนินทรีย์เคมี พันธะโคเวเลนต์ ซัลเฟอร์ ธาตุคาร์บอน สเปกโทรสโกปี ลิพิด คีโตน อีเทอร์ เอสเตอร์ กรดคาร์บอกซิลิก แอลดีไฮด์ แอลกอฮอล์

 

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
จำนำรถราชบุรี รถยนต์ เงินด่วน รับจำนำรถยนต์ จำนำรถยนต์ จำนำรถ 24519